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HOPF BIFURCAT ION FOR FUNCTIONAL EQUATIONS

Introduction. The purpose of this paper is to study the existence

of a smooth Hopf bifurcation for functional equations. The bi-

furcation parameters may include the delays. The results will be

described for a special case of the equations considered.

Suppose r1,r2,r3 are given positive numbers , a(O),

-r < U < 0 is a C1- function , g: 1R3 ÷ iR is a C1 - function ,

g(0) = 0, h: IR -~]R is a C’- function , h(0) = 0, and consider the

equation

(1) x(t) - g(x(t-r1), x(t-r 2), J a(O)h(x(t+O))dO) = 0.

Suppose the linear variational equation around zero ,

(2) x(t) - a1x(t-r1) 
- a2x(t-r2) - a3 I~r3

t
~~~~ 

= 0,

0 0 0 0 0 0has the property that there is a point ~ = (a1,a2 , a3, r1,r2) C

* ~1R )~ and a surface S through this point of codimension

one such ~that the characteristic equation

(3) 1 - a1e ’ - a2e 
r3 

- a3 J
° a(O)e>~ dU = 0

has two roots A (c~),X (~), c~ (a1,a2,a3,r1,r2), for ~ in a

neighborhood U of S, A (a ) iV, V > 0 , and the remaining roots

are bounded away from the imagi~~ry axis for ~ c U. Also,

suppose dA (a)/dcz ~ 0 along the normal to the tangent plane of S

I

- - •. . 0
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~~~ for a c U. Under this hypothe sis , it i3 shown that Equation (1)

has a smooth Hopf bifurcation from 0 at any point on S.

One important remark is that the delays r1,r2 can be

chosen as bifurcation parameters. At first , it would seem to be

impossible to prove this result since the function in Equation (1)

considered as a function on the space C([-h ,0],IR), h > max(r1,r2,r)

is not a differentiable function in r1,r2. However , under the

assumption that a(O) is C’ in 0, we prove every periodic

solution of Equation (1) must be C1 . This fact and an argument

similar in spirit to the one in [4] make it possible to prove the

bifurcation theorem .

Our proof of the theorem uses only the Fourier series of a

periodic function and not the variation of constants formula as is

usually the case for evolutionary equations (see, for example , 13]).

To determine the number of periodic solutions that bifurcate

from zero at a and their stability properties , one must use some

type of averaging process along with the variation of constants

formula. This latter formula is used either to obtain a center

manifold theorem or to show that the characteristic multi pliers

of the linear variational equation around a periodic orbit 
—

determine the asymptotic behavior of the solutions. These

topics will be treated in a subsequent paper .

The results hold for more general equations

01 x(t) - 

~~ 
Akx(t-rk) 

- 

1~r
0 ( t+0

~~
0 - g (cz ,x~) = 0

•1 0

where x C 1R~ , xt(O) 
= x (t+0), -h < 0 < 0, and . a is the bifurcation

parameter which may include all the rk and coefficient matrices

Ak,A(O).

I
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1. Functional Equations.

Suppose r > 0 is a given real number , IR is the real line ,

1R~ is an n-dimensional normed space over ~R with norm .

C( [a ,b],1R~) is the Banach space of all continuous functions 0

~: [ a,b ] 
-~ ]RT1 with the norm = sup{I~~(O) I : a < 0 < b},

C = C( [-r ,0],1R~), .V(X,Y) -is the space of all linear continuous
0 

mapping s L: X -
~~ Y from the Banach space (X,l~~I) into the Banach

space (Y , I  1 ) .  with the norm I L l  = sup{ lLc~I : = U,

= .!/(X). If x C C([a,b],iRn) and a + r < t < b we define

C C by x
~
(O) = x (t+O), -r < 0 < 0.

Recall the Riesz Theorem [8] on the representation of elements

of .~~(C ,fl
n) via the Stieltjes Integral: any D C ~ ‘(C,1R

’
~) can

be written in the form

0
D~ = A0~(0) 

- 

f~r~~~
0)
~~

0)
~ 

i~ C C,

where A0 
C St~OR~) and p : [-r ,0] -‘~I~QR”) is a function of bounded

0 variation on [-r ,0] , continuous at 0 = 0.

If we decompose p as the sum of its saltus part , plus its

absolutel.y continuous part , plus its singular part , we can also

write D4~ as
- -

D~ A~~(0) - Y A
~~

(-r k) 
- 

~~~~~~~~~~~~~~ 
- 

1-r~~~
°
~~~~

°
~
’

where {-r k}k is the countable set of discontinuities of p ,

Ak 
C .~/QR

’
~) is the jump of ii at -rk, for all k,

~ 

-O ~~~~~~~~~~~~~~~~~~~~~~ 
.
~~~— 

~~~~~~~~~~~~~~~~~~~~~ ~ - . — ii~~ I
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~ 

l A k i = 0 , A: [- r , 0] -
~ I(iR’~) is absolutely

- 
5 : k C4.~~ O (r k

(c

Lebesgue integrable i.e., A C L’ and S: [-r ,0] -‘ $I’GIR”) is continuous ,

has bounded variat ion on ( -r , 0] and = 0 almost everywhere.

In what follows , we always suppose that the singular part S

is identically zero. Define

0D Il = A l’(O) - 
~ A
k

t o
- 

D1~J~ J A(O)P (e)dU , for all ~ C C,
-r

-A r
and H0(A) = D0(e~

’ I) = A~ 
- ! Ake 

k and H(A) = D(eA
I), for

~
‘ k

all A C t , where I is the identity n X n matrix.

O We say that D° is hyperbolic if there exist constants

a > 0 and b > 0 such that I de t  H° (A ) I  > b for all A such that

Re A l  < a. If I de t  H ° ( A ) I  > b for  all A such that  Re A ~ —a ,

we say that D0 is stable. To justify this terminology we note

that if A 0 is invertible in ~~~~~~ the hyperbolic (resp. stable)

functionals D° are characterized by the fact that the origin

o c C def ~ C C: D~~P = 0) is a hyperbolic (resp. stable)

equilibrium point of the linear dynamical system defined on C°

by T°(t)~ = x~ , for all t > 0 and • c C° , where x: [-r ,~ ) ~~ ]RTl

is the continuous solution of the  initial value problem

D°(xt) 
= 0 , x0 ~~~. See [3] and [5] for details. The definition

of hyperbolicity and stability can be extended to a general

D ~ 
£Ii~(C ,]R

II) and the above characterization extends to the case

when the singular part S is identically zero; the case S ~ 0

is still open. This concept of hyperbolic is a special case of

O admissibility in [6] , and appeared implicitly in [5]

III. 
‘

~~ ~
-=:;;~i:;.~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~ • _-~~~~~ -~~~~~
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Using the Riemann-Lebesgue Lemma , it is easy to prove that ,

if D° is hyperbolic , then the function det 11(A ) can have only a

finite number of zeros in a sufficiently thin neighborhood of the

imaginary axis. Of course, all of them have finite multiplicity . 
0

- 
- 

Therefore , if D° is hyperbolic , then D = D° + D’ is hyperbolic

if and only if the function det H(A) does not have purely imaginary

roots.

In what  fo l lows , we always suppose that D0 is hyperbolic .

Consider the functional equation

( 1 .1) D(x
~
) - g (x~) = f(t)

where g: C ~l. lRn is continuously differentiable , g(0) = 0, 
0

g ’(O) = 0 and f: IR -‘ 1R~ is continuous .

We study the periodic solutions of Equation (1.1) when f

is periodic . Let 
~~~~~IJ ’ 

U) > 0, be the space of all continuous

w-periodic functions f: IR ~~1R
Tt with the norm If I =

sup (lf(t)I: t c IR), let ~~~~ = {f C !~~ : ~~ c and for

each integer n, let cn [fl = 
~~~~ f0

e~~~
t t~~t.

Lemma 1.1. If D0 is hyperbolic , then for any w > 0 and for

any f C 9~ , there exists a unique solution of D°xt 
= f(t) in 9~.

III. 1 ‘Al ~~~~~~ ~~~ 
.______ 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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If we denote this solution by x = Sf, then S is a bicontinuous

bijective operator from onto itself If f is ck , so is
Sf.

Proof. For simplicity, let us suppose U) = 211 . If f C 
~~ 2T1 and

if the equation D°xt 
= f(t) has a solution x in 

~~~ 11’ then

cn
[X ] = [H°(in)]~~ c~ [f] for n 0,±l ,±2 

This shows uniqueness of the solution in ~~~ (and existence

and uniqueness of solution in L2 [0 ,21T]). To prove existence of

solution in we use a result of Cameron and Pitt [7] which

states that there exist sequences {Xk}, ~
)‘k~ ’ 

Xk 
C ~~~~~n ) 

~
‘k 

C]R ,

A I - in)’
I IX~J < ~~~, such that [H~

’(in)] ’ 
~ 
Xke 

k for all n C ]R. It
k k
is easy to see now that x(t) = 

~ 
Xkf(t+Yk) is a continuous

k
211-periodic solution of D°x

~ 
= f(t) and the lemma is apparent .

As an example , consider the scalar equation

x(t) - A 1x(t-l) 
- A 2 x(t - 1T ) = cost

under the hypothesis 1A 11 + 1A 2 1 < 1.

O The functiona l D 0I~ = 4 ( 0) - A14(- 1) - A2~
(-1T ) is stable

and

1 
= 

~~ 
(A 1e~~~ 

+ A e 1~
11
)~

C
H ( i n )  k=0 2

I

~~ :J E1T~ TT: IJ~~~~i~~~~
; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 SS -.______
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and the unique 211-periodic solution of the above equation is given by

x(t) = ~ (~1)k E (-l)~ A~A~~~cos(t+p).k=0 p=O

Even if D0 is not hyperbolic , we can find , by the above

procedure the (U-periodic solutions of D°(xt) = f(t), f C 9~, in the

case where f is a trigonometric polynomial. But the general

situation is very complicated. For the example x(t) + 
~~

- x(t-l) +

x(t-ir) = f(t), with f e 
~~~ 11 

arbitrary, one encounters the

problem of small divisors.

Another application of Lemma 1.1 is the equation

x(t-l) + [x(t - + x(t - 2 + 
~ )j 

= f(t).

In this example ,

00 

_= 1 (-l) + 

k=2 2~~
1 [p (- 

~
) + q ( - z  +

and it is not difficult to prove that D° is hyperbolic. Therefore ,

the above equation has a unique solution in for any f C .9w.

Lemma 1.2. If D0 is hyperbolic and f C 9(U , then, there exists
a S = S(D 0) > 0 such that , for any continuous T : IR + u/(C ,]R’~)

ci such that T(t+w) = T(t) for all t CIR and jT~ < ~~, where

111 defSUP{IT(t)IP I : ~ C C , I~~ 
= 1, t c IR), the equation

i~ ~~~~~~~~~~~ - ~~~~ --~~~~~~~~~~~~~~ ~-- -~~~~~ 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 

- - T T



8

D°(x t) - T(t)xt 
= f(t)

has a unique solution x(T,f) C and the map (T,f) 1÷ x(T ,f)

is continuous .

Proof. Let !~‘ be the space of all maps T: ]R -
~ ~/(C,1R’1) which are

continuous and -periodic , with the above norm IT I  . Consider the

mapping -

(U ‘A)

defined by j’(T,x)(t) = D°(xt) 
- T(t)xt 

- f(t) for all t C I R .
0 

It is easy to see that ~~ is continuously differentiable. By

Lemma 1.1, ~~(0,xf) 
= 0 where xf(t) = I Xkf(t+Yk). Lemma 1.1

again implies that ~~
—-  (0,xf) is an isomorphism from .~~~~~ onto

itself. 4

Thus, the Implicit Function Theorem (IFT) implies the

conclusions in Lemma 1.2.

Lemma 1.3. If D° is hyperbolic and f C .~~~~~~~ , then there exists

a iS = 6(D0) > 0 such that , for any continuously differentiable map

g: C -i. ]R such that I~ l < 6 , where

I~ I = sup{~ g o3)(~ )p : ~ C C , j = 0,1), then the equation

i

D°(xt) 
- g(x~) = f(t)

has a unique solution x C 9~. Moreover , if f is C’, so is x.

_ _ _ _  a~~~~ — 
~~~~~~~~~ - 

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I



• — 
—- — — ~~~~~~ 0 - 

~~~~~~~~~~~ 
- 

- - — ____ ~~~ 5— .—

9

Proof. Let ~~~~
= {g: C ~~~n 1 g is ~~~~~~ I g i < ~} and consider the

mapp ing

&~~

defined by

Yig ,x)(t) = D°(xt) - g(x~) - f(t)

for all t CIR .

By Lemma 1.1 , s~(o ,I Xkf(•+Yk)) 
= 0 and ~~ (0,1 Xkf(~1Y k) )

k x

is an isomorphism from onto

The IFT can be applied to give a solution x = x(g,f) in

of our equation. t
We suppose now that f is C’ and prove that x(g,f)(t) is

continuously differentiable in t C IR. Let y C be the unique

solution of

D°(y t) - g ’(x~ (g~f)).y~ =

Consider the function

z(t,~ t) = 
x(t+~t) - x(t) 

- y(t)

defined for t cIR, L~t ~ 0. As a function of t, z(t,~ t)

satisfies the equation

p

_____  - 
.~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~ 5 III ~~~~~
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•

0 - 

D ° (z t ) - [fg ’ (cx
~ +~~ 

+ (1- 
~

)x t ) d~ ] = f [~ (t+c ~t) - i Ct) I dc

+ (f [g’(~x~+~~ + (l-
~
)x
~
) - 

~ ‘(x~)Jd~)y~~.

Since this equation depends continuous ly upon Ext , for t d R .

Lemma 1.2 implies that Z(•,t~t) is a continuous function of L~t ,

for ~t C~~J~~ Therefore , there exists the limit u r n  Z(., L it )  C 9~.
But this limit solves the limit equation D (z

r) 
- 

~‘(x~) 
. z~ = 0,

so it is the zero function and * = y .

Corollary 1.4. Suppose D0 is hyperbolic , f is C’ and A: [-r ,0)
1 10.~e~IR”) is an L - function such that the function t i-+ A(U)x(t+0)dO

is continuously differentiable whenever x is continuous. Then ,

there exists a 6 = 6(D°) > 0 such that if g: C -*- JR’~ is
and i~ I < 6, then , all continuous periodic solutions of the equation

0
: D°(x t) I~r

0)x(t+0)d
~ 

- g(x~) f(t)

are C1. 
-

*Proof. Suppose x C is a solution of the above equation.

Then , x is also a solution of

0 0 
*U (x

~
) - g (x~) = 

J 
A(0)x (t+0)dO + f(t)

and Lemma 1.3 implies the result.

- _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i—c ~~~~. .- ~~~~~~~~~~~~ ____
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Suppose D° is hyperbolic and suppose that D is not

hyperbolic. Let us seek now the solutions in of the linear

homogeneous functional equation D(xt) 
= 0. We consider only the

case (U = 211. By taking Fourier coefficients , we see that there

exist nonzero solutions in if and only if the equation

det H(in) = 0 admits at least one integer solution n. Let
(p.)

n1,...,n11~ be all these integers. Let v~j ‘,...,v~ ~ be a basis
j  j

0 
for the subspace {v CIRn : H(in.)v = 0)- . Then , it is easy to prove

that the set of all complex-valued continuous 211-periodic solutions

of Dx
~ 

= 0 is the set of all linear combinations of the functions
in.t (k)

e ~ v~ ; k = 1,.. •,p~ ; j = l ,...,m.
3
We now study the periodic solutions of the nonhomogeneous

equation D(x
~
) = f(t), when £ C 

~~~~~~
, D ° is hype rbo l i c  bu t

D = 1) + D is not h y p e r b o l i c .

For this purpose , we define the adjoint equation associated

to the equation D(x
~
) = 0 as the functional equation

* 
0 0

D (y e) y(t)A0 
- 

~~ 
y ( t + r k )A k - 

J~r 
t-0 (0)dO = 0

n *1where y belongs to the dual ~1R ) of IR . All that has been

said for the equation D(x
~
) = 0 carries over for Equation (1.5)

with the obvious adaptation. In particular , the set of all

continuous 211-periodic solutions of ~*(y~) = 0 is the set of
in.t (k)

all linear combinations of the functions e ~ Ow n k = 1,... ,p~ ;
3

I

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~ 
., ~~~~ T~T~ -~~~J



j = 1, . . ., m where ~~~~~~~~~ ~~~~~~~~~~~~ is a basis for the subspace

{w C QR ) : wH(in~) = 0) and as before , n1,.. .,n3 
are the integer

solutions of det H(in) = 0. We will suppose that the vectors w~~
are unit vectors.

Lemma 1.5 (Fredhoim Alternative) Suppose D° is hyperbolic ,

D = D° + D1 is not hyperbolic , A: [-r ,O] . IR~) belongs to L1

and f C 
~~~~ . Then the equation Dx

~ 
= f(t) has a solution in

if and only if £ is orthogonal to the continuous (U-periodic

solutions of the homogeneous adjoint equation D y
~ 

= 0 that is ,

( (U

I y(t) f(t)dt = 0 for all continuous (U-periodic functions
.10

n * * 1y: IR -
~~ QR ) such that D = 0. Moreover , if £ is C

to 1

and t 
~ J A(O)x(t+O)dO is C~ whenever x is continuous ,

then , all solutions of D(xt) = f(t) in are in ~~~~~
Furthermore , there exist linear continuous operators

J: -
~~ 

and .iit’ : (I-J) .9~ 
-

~~ 
such that (I-J)~~

is the set of all f C 
~~ 

which satisfies the above orthogonality

condition and , for any f C (I-J) 3i~ , x = 3t’f is a solution

in of the equation D(xt) = f(t). In other words , ..
~~~

‘

is a continuous right inverse of the operator x F~ D( x ) .

Proof. For simplicity take U) = 211. I f the equation has a solution

x*(t) in 
~~~~~

, then equating Fourier coefficients
- .1
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-

~ 

implies H(inj)cn [x*] = c~ • [f]. 
(k )

Multiplying both sides of this equality by w~ we get

( k )
W •cn [f] = 0

.3 3

or

p 211 -in.t ( k)
j e w •f(t) = 0

0

for all k = 1,.. ~~~~~~~ 
j = 1,. ..,m. But this implies that f is

orthogonal to 211-periodic solutions of D y
~ 

= 0.

Conversely, if the above integrals are zero , then we can produce
(n.) (n.)

vectors V
f ~ , j = 1,.. .,m , such tha t F1(in1 )v f ~ = c~ If] and

.3
construct the function

O 
* m in.t (n.)

x (t) = e ~ ~V
f 

•~‘ + I H~~ (in).c~~[f ]e~~ t .

~~~~~~

This function is a well-defined 211-periodic L2-solu tion

of the equation D(xt) 
= f ( t ) . From the Schwarz Inequality, x*

* 00

is bounded and therefore x belongs to L [0,211] . Le t us prove
* *that x (t) is in fact a continuous function. Indeed , x (t) is

also a 211-periodic L2-solution of the equation

0 * 

0

D°(Xt) 
= f(t) + 

f r~~
0 X  (t+0)d O .

0
By hypothesis , f is continuous ; the function , t 1~ J 

A(U)x(t+0)dO
1 -r

is continuous since it is the convolution ofan L - function with an

I -. —- i~~&_~ ~
_
~i ~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~--~~~~~ 

A 
- _ _ _ _ _ _ _
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00 *L function . Then , Lemma 1.1 implies that x is continuous .

Now, since the matrix H (in.) admits a right inverse , the
(n.)

vectors V
f ~ can be chosen such that they are linear and continuous

in f .

We define the projection J by

(Jf) (t) = 

~~~~~ 
k=1 L11 1

211
w (k) e 3 f(s)d~~ [Y

ft
~~~~ t CI~, f C 

0

and the operator J’I’: (I-J) L~ 
-

~~ 9~ 
by

m i n . t  ( n . )  -l( 5 ~’f ) ( t )  = I e V
f 

3 
+ I H ( in) cn [f] e ”

~
’ , t dIR ,

j = l  n~ n 1, . .  . , nm

f C ( I - J ) 9
IA)

Schwarz inequality shows that ~~~~~
‘ is continuous and the

rest of the proof of Lemma 1.5 is obvious.

Let us specialize the Fredholm alternative to the case where

±1 arc simple roots of h(A) = det H(A) = 0, that is , h(i) = 0

and h’(i) ~ 0. Let P be an invertible n x n matrix such that

P ’il(i)P is in the  complex Jordan canonical form

0 

Pl
C1 (D

P 11 1( i ) P  = £ 2

0

~ — ~~~~~~~~~~~~~~ - -~~~ ~~
- — -
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where 
~~~~~~~~~~~~~~ 

are the eigenvalues of H(i) and C1,.••,C E

(0,1)- . Since 0 is an eigenvalue of H(i) we can suppose that 
0

111 = 0. Let M(A) = (M
~~

(A ) ] P~~H( A )P . Then ,

T 
M~1

(i) C
1 

0 ... 0

M~1(i) p
2 

C
2 

. . . 0
h’(i) = det I : 

.

£
n-l

L 
M~~ (i) 0 0 ...

Since h’(i) ~ 0 by hypothesis , we can conclude that the number of

blocks associated with the eigenvalue 0 is one ; that is , the

-
~ null spaces Nr = (v C ~

n : H(i)v = 0} and N~ = {w C (4
151

)
*
: wH(i) = 0

have dimension one. If the block corresponding to the eigenvalue 0 
-

has dimension j x j, then , it is easy to see that V
0 

= P4 and

w0 
= e.P 1, where ek is the 1 * n matrix with zero components

except the kth which is one , are basis for Nr and N~ , respectively.

It is easily seen now that j

[(~ l) 3+1
MJ1 ( i) u~ +l • . .  p if j < n

h’(i) 
1
I n+1

~~ ~1111(j ) if j = n

and w 0U’ (i)v0 = M !1(i).

____ 

1w 0 1
Therefore , if we define w = and v = M~1(i) 

v0

we have

—OS O
~ o —--~_ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —5- — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- - - 
1 ~___I.j
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(1.3) I1(i)v = 0, wH(i) = 0, Iw l = 1, wH’ (i)v = 1.

Using (1.3), one can also prove that the conditions h(i) = 0 and

— 
- h’(i) / 0 are equivalent to saying that the equation D(xt) 

= 0

has a one-dimensional space of solutions of the form eitb and no

solution of the form eit [tb+c] , b / 0.

Suppose now tha t ±i are simple roots of 11(A) = 0 and no

other characteristic root is an integral multi ple of i.

For each f e such that 
~~~~ 

[f] = 0, choose v [f]

:4

~

——-- ~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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varying continuously with f such that 11(i)v[f) = c1 [f]. Then

the general real 211-periodic continuous solution of D(x
~
) = f(t)

is given by

•
0 x(t) = ce ltv + ~~~~~~ + I H(in) 1c [f ] e~~ t

ln l /l n

it -it—
~~e vf + e  V

f

c C ~~~ arbitrary .

The projection J :  
~~~ 

-‘ takes the form

(1.4) (Jf)(t) = (wc 1[f ] ) e 1t~ T 
+ (~c 1 [f])e~~

twT

I

and the operator ~~‘: (I-J) 
~~~~11 

+ 
-!

~~
-
~ 

is g iven  by

(1.5) K[f](t) = e1tvf + e v f + ~ H~~(in)c [f]e~~
t,

!nl/l n

for all f C (I-J) .9~ and all t C ]R.

2. The HopE Bifurcation Theorem.

4 Suppose i~~
’ is a real Banach space , the parameter space ,

a
0 c -~~

“ is fixed , Va is a neighborhood of a in ~~~
‘; D and

0 0
g are continuous mapp ings from ~ e ’* C into IR~ ; D(a )~ is linear

in ip ,

- - - -~~~~~~~-~- ii ~~~~~~~~~~~ rz:~~~~
4
~~ 

_ ;~~~~~~~~~~~~~~~~~~~~~ • ‘  -
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D(a) = D°(a) + D1(c4)

D0(a)~ A0 (a)~~(0) - 

~ 
Ak(a)~(~

rk(a)), D
1(a)~ 

~~~~~~~~~~~~

where

0 < rk (a) < r , AO (a),Ak(a) C ~~~ n) IlA k(a)J < 00
, l im I lA k(a)l= ( -

k C.l~0 O<rk
<C

uniformly in U C V~~~,A(a , .) :  [ - r , 0] +.~~QR
r
~) isa L1 function such

that the function t 1+ f A(a,a-t)x(a)da is C for any continuous
t-r

x: JR ~~IR
Tl , g(a~ p) has continuous first derivative in ‘J’ , g(a,0) = 0,

(a ,0) = 0, for all U C V~ , and consider the functional equation‘p 0

(2.1) D(a)xt 
- g(a~x~) = 0.

An example which is a special case of (2.1) is the scalar equation

-L u
(2.2) x(t) - A1x(t-r1) - A 2x(t-r 2) - A 

‘-L 2 

- g(x~) = 0,

where the parameter ~ is the 7-tuple of real numbers

a = (A1,A 2,A ,r1,r2,L1,L2) .
e

Our first hypothesis concerns the behavior  of the d i f fe r e n c e

operator in a and is the following :

— -  — — -—  -- - - --~~ -- - —~~~~~~~ - — -— - -O S  OOS~~~~~~ OS OS~~~~ 0~~~~~_ O S 0 ~~~ 

-

~~

‘I— & -
~~~~~~

‘
~~~~~~

- 
~~~~~~~~~~~~~~~ .=~~ ~~~~~~~~‘— ~~~~~- ~~~- ~~~I±~~~~~~ ~~~~~~~~~~ - ~~~ .—~~~~~

---- —--
~~~~~~~ 

-
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(U l)  We asume there exist constants a > 0, b > 0 such that if

A C 4, IRe A l  < a, then

-Ar
ldet(A 0 

- I Ake 
k)1 > b for all a C

k 
- 

0

Hypothesis (Hi )  says that D0(a) is hyperbolic for all U

in a neighborhood of a0. If a contains some of the delays rk ,
then, Hypothesis (I-Il) puts strong restrictions on the corresponding

coefficients Ak. To better understand these restriction s we re-

produce here some results in [1] .

Suppose

N
D ° (U )~ = ~(0) 

- I Ak~
(
~ Y k~

a)
k=l

a (a1,.. ~~Uq) C

= 

~~kl’~~
”’)’kq~ ’ 

)‘kj nonnegative integers ,

and

- -Y ~aA
~~(a) = closure{Re A: det(I - I Ake 

k 
~ 

= 0),

t
O where = y .x.. It is shown in [1] that 

~~
(
~~

) is a finite
j = l  ~

union of closed intervals for any U C 0R ’ )~~. Also , if the

components of a are rationall y independents , then P C

if and only if there is a 0 £ ~~~~~ such that

..y .a p jy .0
(2.3) IJ( p ,0 ,a) = det [ I - I Ake 

k e k 1= 0.

- - -— — 
—~~~- - -

—

~~~~

-— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I
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Even if the components of a are not rationally independent i

we can still discuss the solutions of (2.3). Let

= max (P < 0: there is a (3 C J ~~~ such that 11(p ,0 ,a) = 0)

= min{p > 0: there is a 0 C]~~~ such that F1(P ,0 ,a) = 0).

Take a
1(a) 

= ~~00
, c

2
a = +00 if the set involved is empty.

From the results in [1] , Hypothesis (Ill) is equivalent to

< -6  < 0 < 6 < 02 (0) for V0~0
.

But then , from [1] , D0(”)4 is hyperbolic for !~~ ~ C

that is , the property of being locally hyperbolic in the delays is ,

in fact,a global property in the delays.

A trivial example is D0(a)q = 
~~0) - ac~’(-a 1) 

- bq (-a
2)

— + abq (-a 1~
a
2) with l a l  < 1, I b I  > 1. In this case , I-10(A) =

(l-ae 1)(l-be 2) with roots lying on either the line

Re A = h.— ln l a l or Re A = 
~~

-_ ln l b t .
1 2

The scalar two -delays functional

D°(a)~ = ~~ (0) - a1~ (~
a
i) 

- a2~ (-a 2)

is hyperbolic for any a C Q1~~) 2 if and onl y if ja 1 I + 1a 2 1 < 1

(stable) or 1a 2 1 > 1 + 1a 1 1 or 1a 1 1 > 1 + 1a 2 1 (unstable).

_ _ _  _ _ _ _  

~~~~~~ 
- 

_ _ _ _ _ _
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Our second hypothesis i~ t h e  fo l lowing :

¶ (H2) The characteristic matrix

-Ar rO
H(a,A ) = A 0 (a) - I Ak (a)e  k 

- A(U,0)e
AO dO , A C 4:,

f 

k

is continuously differentiable in a; the characteristic

equation det 1I(a ,A ) = 0 has , for a = a0, a simple purely

imaginary root A
0 

= jV0, V
0 

> 0, and for any integer

n / ±1 , nA 0 is not a root.

By changing the time scale , we can suppose that A 0 
= i. By

the I.F.T., we can find a 6 > 0 and a function A (a) C 4: con-

tinuously differentiable for !a-a 0 1 < 6 such that A ( u 0 ) = A 0,
A (a) is a simple root of det H(a,A ) = 0 and if det H(a,A ) = 0

for Ia-a 0~ < 6, IA - A 0 1 < 6 , then A = X ( u ) .

Let us take v(a) C 4:” and w(a) C (4:
fl * 

such that

H(a,A (a)) v(a) E 0, w(ct)H(a,A (u)) 0, jw(a) j = 1, and

(2.4) w(a) ~~~~~~ H(~ ,A (a))v(u) 1

for Ia-a 0 1 < 6 .

We observe that the derivative of A(a) with respect to

a at a = U
0 

is given by

(2.5) A’(a0
).t~a =-w [~~

1 (U 0,A 0)t~a]v

where v = v(U0) and w(c*0) w, for all ~ U C ~~~~.

:1 
______________

- ~~~~~~~
_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~~~~ ~~~~~~~~~~~
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Our third hypothesis con crns the differentiability of the

Equation (2.1) with respect to the parameter U • If we impose

that D and g are continuously differentiable in a , the case

where a contains some of the delays rk is not inluded , since

in this case the function a ~~
. D(a) C ~~IC ,iR”) is not even con-

tinuous . Fortunately, all we need is

(113) For any K > 0 , any ~ C C with ~ C C , 
~~ 

< K , the

functions

a - ~~D(a ,cp )

a -* g (a ,~~) ,

are continuously differentiable in V
~ 

.

0

The last hypothesis says that the characteristic root A(a)

“crosses” the imaginary axis through A 0, with nonvertical velocity ,

for almost all directions:

(H4) Re .
~~~~~- (a

s) / 0.

-i
We can now state an extension of the Hopf Bifurcation

Theorem for functional equations:

Theorem. Under Hypotheses [Hl]-[H4] , there is an C > 0 such that

for a dIR , l a l < C , there is a C1-manifo ld ra C ia’, of codimension 1,
ra continuousl y differentiable in a, U

0 
c r0 =, (a C ..~~~

‘
: Re X(u) = 0,

Ia~
a
0l < C) , such that for every U C ra , there is a [unction (U(a,U)

O S— -  ~~~~~~~ •O O S O  ~~~~~~~~~~~~~~~~~ 
. —- _l
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*and an (U(a,cX)-periodic function x (a,a)(t), continuous together with
2 u  *their first derivatives in t,a,u,, (U(0,U0) 

= ~~~— , x (0,”0) 
= 0, and

x (a,ci) is a solution of Equation (2.1). Furthermore , for

< C , I’ A
~

’A
~~I < C every (U-periodic solution x of l

~qu~ .ion (2.1)

with l x i < C must be of the above type except for a translation in

phase , that is , there exist a C (-C ,C), U C ra and b CiR such that

x(t) = x (t+b ,a,U) for all t c]R .

Proof. The proof proceeds as the proof of Theorem 2.1 in [4]

We first introduce a free parameter ~ in Equation (2.1)

by scaling the time and detemin~ 211-periodic solutions of

the resulting equation.

Let ~ >-1 , t = (1+~ )t , u(t) = x[(l+~)t) and u
~~~

(O) =

u(T + 
~~~~~ ) ,  -r < 0 < 0. Then , Equation (2.1) is equivalent to the

equation

(2.6) D(U)u1~~ 
- g(a ,u1 ~~

) = 0.

If this equation has a 211-periodic solution , then Equation

(2.1) has a (l+~)2u-perjodjc solution , and conversely.

Let us consider the above equation as a perturbation of the

linear equation D(a0)u1 = 0 and rewrite it in the form

D(a0)u1 = N ( 13 ,u , u ) ( t )

where

N(B, a ,u)( t )  =def D(a 0 )u
~ 

- D(a)u
~~~ 

+ g(u ,u~~~)

- -  0 0  -~~~



211-periodic continuou: 

—

solutions , which are near to the null s’ .ution, of the equation

(2.7) D(U0)u1 
= [ ( I - J ) N ( ~~,a ,u ) )  (t ) ,

and prove that there exist values of ~ and a such that :
JN(~ ,a,u)(T) 0. Here J is the projection operator given by

relation (1.4).

It is clear that , after this is done , we have a 211-periodic

solution of Equation (2.6).

By Lemma 1.5 , Equation (2.7) is equivalent to

(2.8) u (T) = a(e v+e (T
~~~~) + ~~ (J J ) N ( ~~,a ,u ) ( t )

where a,b are real constants , v is given in (1.3) and the

operator 3t~ is given in (1.5).

Since Equation (2.6) is autonomous and equivalent to Equation

(2.8) plus JN(~ ,a,u) = 0, we can take h = 0 in Equation (2.8); the

other solUtions are obtained by translations in the phase.

Consider the mapping $~: JR 
x (-1 ,00) x~~~~(x 

~~ ~~~
defined by

= u(T) - a(e 1t v+e~~~~v) -

Pt is easy to see that , and .~! exist  and are

I _~~~~~ _ t~~~ -~~~ —
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continuous functions in all the arguments.

We note that y~(O ,0,a0,0) = 0 and -
~~~~~~

-- (0,0,c* ,0) is the identity.

Then, the I.F.T. imp lies the existence of

an C > 0 and a function u*(a,~~,a) C ~~ , for each (a,~~,ct)

such that i a i < C , ~~ 
< C , i U_ U 0 1 < C , lu *(a,~~,a)I < C ,

u (0,~~,a) = 0, and ~~~~~~~~~ (a,~~,a)) = 0.
*

As a consequence of the I.F.T., u (T ,a,~~,a) is continuously

differentiable in a for a l  < C~ We want to show that it is

also continuously differentiable in t , , 6 and U in the region

T CIR , J ~ I < C , Ia -a 0 1 < C . The continuous differentiability with

respect to I follows from the fact that u (a,~~,a)(I), being a

periodic solution of the functional equation (2.7), is continuously

differentiable with respect to I , by Corollary 1.4. ~~~~~~~ u~

continuous and the fact that N(~ ,U ,u) is continuously differ-

entiable in ~ whenever u is continuously differentiable in I ,

implies u*(a,~~,a) is continuously differentiable in ~ . By the

same reason and Hypothesis (H4), u*(a,~~,a) is continuously differ-

entiable with respect to a~

Let us consider now the bifurcation equations
*

J(N(~ ,a,u.(a,~~,a))) = 0 or , equivalently the equation ,

1 211 _~~~ *

~~ 10 
e w N(~ ,a ,u (a,~~,a))(T)dt = 0

for l a l  < C , ~ B J  < C , ia-a 0 1 < C . Since J[N(~ ,U ,u*(0,~~,U))] = 0

for all a and ~~, we divide this last integral by a and define

,211 -

G(a,~ ,a) = 
~~~~~~ J e~~

Tw N(~ ,a,u*(a,8,a))(T)dT
0

~ I& A ~~~~~~~~~~~~~~~~~~~~~ 
~0~ 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~— ~~~~ _—_  _______
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~~~~~~~
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and solve G(a,~~,a) = 0.

Now , we compute G(0,~~,a). In order to simplify the notation ,

1 *
let us put u (T ,~~,a) =def 

.
~~~~~ u (t ,a,t3,a)I a..0. Then, we have , since

g ’(a,0) = 0 for all a:

G(0,~~,a) = 
~~~~~~ J:

e- w1D a
o u

~~~~
u -

= w E l 
~~~~~~~~~~~~~~~~ 

~ 
J

211
e~ is u l (s~~~~a)ds  -

- w [ I  - 
j_ r 

(a ,O)-e ].
~~~~~ 10 e~~~u

1(s,8,a)ds)

= w[H(a0, i) - H(a, th)]v = -wH(a, ~~~~~

Therefore , taking derivatives and using the equations

w ~ (a 0, i)v = 1 and A’ (a0)~a= -w [~-~ (U 0,i)~ U]v we get

(2.9) ~~~~~~ (0,0,cL 1~) 
= i

and -

(2.10) ~ (0,0,a0
).Aa = -w ~~~~ (a0,i)~a~v = A ’ ( a 0 ) .A a

From (2.9) and the I.F.T., we can solve the equation

:1
Im G(a ,8,ct) = 0

_ _ _ _ _ _ _ _ _ _ _ _ _  ____ -~~~~~~ O S- -



- 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

25

OS 

for ~ = ~3*(a a) about a = 0, = U
0

.

Consider now the last equation

r(a,a) =def Re G(a,~~~(a,a),a) = 0.

Relation (2.10) and Hypothesis (H4) implies that for each a eIR ,

l a l small , there exists a C1-manifold ra C ç~/, with codimension 1,

such that for any a C “a’ r(a,a) = 0. Moreover ,

r
0 

= (a C -~~~~~ : Ia-a 0 i < C , Re wH(a , )v = 0)
1+~ (çJ ,a)

= (a C c~: ia-a 01 < C , Re A (a) = 0)

and the tangent space of r
0 

at a
0 is given by T

~ 
r0 =

0
Ker Re A’(a0) . 

- 

-

* 

Given an a dIR , l a l < 6, and an U C r , we determine 
*

~ (a,a) and find a nonconstant 211-periodic solution u (T ,a,~ (a,a),a)

* * t *of Equation (2.6) and so , x (t,a,a)  = u ( * ,a ,~ (a,a),U) is
l+~ (a, U)

*a [1+8 (a,a)].21T-periodic solution of Equation (2.1).

This comp letes the proof of the theorem .

Remark. It is clear from the proof of the above results that if

we assume that the functions D(u,~ ) and g(cz,4) have k derivatives

with respect to ~ which are continuous in the pair (a ,~ ) and

Hypothesis (113) is satisfied for the kth derivative with respect to
.1 a when ~ has k continuous derivatives in 0 6 [-r ,0] , then,

the bifurcation function F(a,a) and the functions x(a,cz) and

L. LO!~~~~~~~~~~~ Z._ L. _ __  - ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~ ‘-_
~~

--—
~~~~11.r. 

- O - - 
- ~ 

~~~ ~~~~~ _______
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w (a,a) in the theorem have continuous derivatives up through order k.

3. Example.

Consider the scalar equation

(3.1) x(t) = J F(x(t+0))d(3
-L 1-L 2

where F(x) = bx(l-x) if x C [0 ,1] , P(x) = 0 if x ~ [0 ,l]

and b > 0, L1 > 0 and L2 > 0 are constants , bL2 > 1.

Equathn (3.1) was proposed in [2] as a model for some

epidemics and growth processes.

The dynamical system defined by Equation (3.1) has the

equilibrium 1 - (bL2) 
1 

The variational equation around this

equilibrium is given by

2(3.2) y(t) = cr— 
- b) J y(t+0)dO .

2 -L 1-L 2

Let a = (b,L1,L2). The characteristic equation is

-L
2 Xe

(3.3) - H(a,A ) = 1 - (
~~~~~~~ 

- b) J e do .
2 l 2

Since bL 2 > 1, I1(a,0) / 0 and zero is not a characteristic value .

For A / 0, find ing the zeros of H(a,A ) is equivalent to finding

the zeros of the function 4
- 1 - L X  -(L +L )A

(3.4) AH (cx ,A) A - (~~~
— - b)[e 1 - e 1 2

OS ---~~~ OS -~~~~~~ — - - - __
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For this example , D°~ = ~(0) which is hyperbolic ; in fact it is

asymptotically stable sinc e D°y~ = 0 imp lies y
~ 

is the zero

function for t > L1 
+ L2 regardless of the initial function. The

operator D’ is given by

1 2D ~ = 

~
r- - b) c

~~8)d0
2 -L 1-L 2

which satisfies all of the smoothness conditions required in the h op E

bifurcation theorem . Also , the function F(x) is smooth near the

equilibrium point 1 - (bL2Y
’.

I t  remains to verify the hypotheses (112), (114) concerning the

nontrivial zeros of the function AE1 (a ,A ). If 8 = - b , this is
2

equivalent to discussing the zeros of

— (L1+L 2)A L2
A

(3.5) Xe = 8(e - 1).

The most interesting values of 8,L1,L2 are those for which all

nontrivial solutions have real parts less than or equal to zero and there

are roots with real part equal to zero. This will define a surface r

O of codimension one in JR3. On one side of this surface , the equilibrium 
-

point 1 - (bL2)~~ will be asymptotically stable and , on the other

it will be unstable. If a point of this surface corresponds to the

case where there are only two purely imaginary roots , then we have a

Hop f b i f u r c a t i o n .

The analysis of the characteristic equation and the determination

of the surface r are difficul t. However , we can say something about

the equation .

- -~ 
OS - OS 0- ______________________________
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Suppose first that L1 = 0, that is ,

L A L A
(3 .6 )  Xe 2 = 8(e 2 1).

The region of stability and instability for this equation are well

understood (see [3]). Tn fact , for the more general equation

L X  L A
(3.7) Ae 2 

= -1 31e 
2 

-

the regions are depicted in the accompanying figure.
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In region (I), all characteristic roots have negative real parts.

The curve + = 0 bounding this region corresponds to a simple

zero root and the other curve bounding this region, to two purely

imag inary roots. At the intersection of these curves one has a

double zero root.

The roots of (3.6) of interest to us are the nonzero ones since

they must be roots of (3.3) and we have assumed 1 - bL 2 / 0. From

our discussion of (3.7), it follows that Equation (3.6) has all roots

with negative real parts for 1 - (bL2)~~ > 0, which is satisfied by

our hypothesis that bL 2 
> 1. Consequently, the equilibrium point

1 - (bL 2Y
1 is asymptotically stable for all b ,L2 and no bifurcation

can occur . 
- - -- ____

Now suppose L1 > 0 and for simplicity that B < 0. Equation

(3.5) has only one real root , namely, the root A = 0. This means

Equation (3.3) has no real roots. Let us prove that , if L1 and L2
vary in a compact interval , then as 13 -

~~ 0 , 8 < 0, all the nonreal

roots have real part approaching -
~~~~~. It is easy to see that

-L 1
A -(L1

+L
2)AA = 0 is a simple root of the function A - 8[e -e 1,

for all 8,L1,L2. Therefore , by the I.F.T. we can find an C > 0
2

such that ‘for 1 8 1  < ~~— there is a unique root in the ball

I A I < C , namely A = 0. By equating the real and imaginary

parts , we see that any root A satisfies Re A < 2 1 8 1  and if
l - 6 ( L 1+L 2 )

Re A > 6 lnl ~I , 6 > 0, then Im A l < 2 1 8 1 . Choose any

6 > 0 such that 6 < [2(L1+L 2)]~~ . Then, each root in the rectangle

(A C 4:: 6 l n I B I < Re A < 2 1 8 1 , lIm A~ < 2 I 8 I lh/
~ } satisfies

X l < 2 I B l
h h/2 . Therefore for 1 8 1 small all roots , except A = 0,

have real parts less than 6 1n IB I . If A = jw is a solution of

Equation (3.5), then

~~~~~_ ~~~~~~~
.__- _

~~
_ -

~~~ - -  -~~~~~~~5’~~~ - - - - - - 
- 

~~—w-
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cos L1
uJ = cos(L1+L2)w

(3.8)

1 3 =  .sin L1
U) - sin(L1+L 2)w

which implies that

2kTF L
(3.9) 13 sin 2L1+L2 

= 2L 1÷L 2 ‘ 
~ = 2L 1+L 2

for some integer k > 1.

Equation (3.9) define surfaces in (13,L1,L2)-space. These are

certainly surfaces which always have 13 < 0. Take the surface S that

has the following property: For any fixed (80,L~ ,L~) in 5, Equation

(3.5) at (B ,L1,L2) has all nonzero eigenvalues with negative real

parts  for 8 0 < 13 < 0. At the point (B 0,L~ ,L~), there are exactly

two purely imag inary roots of Equation 3 .5 .  Thus , the

condition (112) is satisfied. Also , in the direction normal to this

surface the eigenvalues corresponding to these two purely imaginary

eigcnvalues are crossing with a definite velocity . Therefore ,

h1~pothesis (114) is satisfied and there is a Hopf bifurcation at each

point on the surface.
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